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Objective. To introduce cross-validation and a nonparametric machine learning
framework for plan payment risk adjustment and then assess whether they have the
potential to improve risk adjustment.
Data Sources. 2011–2012 TruvenMarketScan database.
Study Design. We compare the performance of multiple statistical approaches within
a broad machine learning framework for estimation of risk adjustment formulas. Total
annual expenditure was predicted using age, sex, geography, inpatient diagnoses, and
hierarchical condition category variables. The methods included regression, penalized
regression, decision trees, neural networks, and an ensemble super learner, all in con-
cert with screening algorithms that reduce the set of variables considered. The perfor-
mance of these methods was compared based on cross-validated R2.
Principal Findings. Our results indicate that a simplified risk adjustment formula
selected via this nonparametric framework maintains much of the efficiency of a tradi-
tional larger formula. The ensemble approach also outperformed classical regression
and all other algorithms studied.
Conclusions. The implementation of cross-validated machine learning techniques
provides novel insight into risk adjustment estimation, possibly allowing for a simpli-
fied formula, thereby reducing incentives for increased coding intensity as well as the
ability of insurers to “game” the systemwith aggressive diagnostic upcoding.
Key Words. Risk adjustment, machine learning, regression

Risk adjustment models have become commonplace when adjusting for
patient characteristics to predict clinical, cost, and quality outcomes. Typically,
these models are estimated using classical linear regression (Iezzoni 2012).
The trajectory of risk adjustment methodology, particularly as practiced in
payment models developed by the federal government, has been largely fro-
zen since the 1970s, failing to incorporate statistical advances that could yield
more accurate formulas. This is a potentially costly oversight, as risk adjust-
ment is extensively employed in plan payment, where it attempts to control
for the impact of consumers choosing their own health plans.
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For example, the new highly regulated state-level individual health
insurance markets, known as Marketplaces and created by the Affordable
Care Act, use risk adjustment systems for plan payment. The Marketplaces
aim to provide coverage that is both affordable and comprehensive to those
without health insurance. The federal government proposed a risk-adjustment
formula for the Marketplaces, and all states except Massachusetts (which
already had a state-level risk-adjustment formula based on its earlier health
care reforms) implemented this system (Kautter et al. 2014). The Marketplace
risk-adjustment models are estimated with ordinary least squares regressions
and predict plan spending as a function of three sets of indicator variables:
age-gender categories, diagnostic conditions, and selected diagnostic condi-
tion interactions. It is important to note that this federal risk-adjustment sys-
tem was originally developed for a Medicare population. Marketplace
enrollees are a fundamentally different group (e.g., much younger) from this
Medicare population.

Insurers are responsible for reporting the diagnostic conditions used to
calculate patient risk scores, and enrollees with more diagnostic conditions
obtain larger payments from the government. This leaves insurers incen-
tivized to code more intensely to increase revenues (Kronick andWelch 2014).
Recent work by Geruso and Layton (2015) estimated that increased coding
intensity in Medicare Advantage, a private coordinated care option in Medi-
care, has led to overpayment of $11 billion each year. Strictly fraudulent
behavior, such as using prescriptions or lab results instead of physician diag-
noses to code conditions, will also lead to excess payments. Both legal and ille-
gal charge captures, often referred to as upcoding, are types of “gaming” the
risk adjustment system. While regulators attempt to prevent gaming by
restricting which diagnoses condition codes can be used in risk adjustment,
these condition codes remain numerous and the formulas overall involve doz-
ens of covariates in a linear regression (Kautter et al. 2014). It is therefore of
interest to explore whether a simplified, more parsimonious risk adjustment
formula retains the predictive performance of a larger model.

Reducing the opportunities for gaming the risk adjustment system is just
one of the criteria for evaluating alternative plan payment methodologies.
The primary motivation for risk adjustment of plan payments is to reduce the
inefficiencies associated with adverse selection in health insurance markets
(Breyer, Bundorf, and Pauly 2012). Ultimately, an alternative payment for-
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mula should be assessed in terms of the effects it will have on efficient sorting
of consumers across plan types (Einav and Finkelstein 2011) and on ameliorat-
ing the incentives to plans to distort services to favor healthy (low-cost) enrol-
lees over the sick (high-cost) enrollees (Glazer and McGuire 2000). While
some papers have assessed these incentives in the context of employer-spon-
sored health insurance (Einav, Finkelstein, and Cullen 2010), Medicare
(Brown et al. 2014), and Marketplaces (McGuire et al. 2014), by far the most
common metric for assessing risk adjustment alternatives is simply the R2 of
the risk adjustment model (Kautter et al. 2014; van Veen et al. 2015). While
acknowledging the limitations of a fit measure like R2, as a first step in consid-
ering the potential of machine learning methods, fit measures seem like the
natural place to start.

Meanwhile, the broader health statistics field is rapidly moving toward
newer techniques as the era of “big data” brings increased information on
patients, such as electronic health records. Given the size and complexity of
these new data structures, standard statistical methods will often not be suit-
able or feasible. For example, it has become commonplace for there to be hun-
dreds or thousands of covariates collected to explain an outcome of interest
(van der Laan and Rose 2011). Newer statistical methods can accommodate
this challenge. There is substantial potential to incorporate these advanced
methods in risk adjustment. Current methods do not fully exploit the informa-
tion in the data by remaining limited to parametric regression. That said,
embracing more sophisticated estimation techniques with improved abilities
for detecting interaction, nonlinear, and higher order effects need not indicate
that a more complex risk adjustment estimator is necessarily warranted.
Machine learning frameworks also allow us to screen variables, reducing a
potential risk adjustment formula to, for example, just 10 variables.

The general applied statistical literature has begun to embrace these
automated machine learning techniques (Lee, Lessler, and Stuart 2009; Sudat
et al. 2010; Rose 2013), but this transition has yet to be made in other areas,
including health economics. Machine learning methods aim to smooth over
the data similarly to the way parametric regression procedures do, except they
may make fewer assumptions in a nonparametric statistical model and adapt
more flexibly to the data. The potential of these methods is considerable; they
can provide avenues for researchers to build the exact type of interactive pre-
diction methods they desire for use in practice. And, in the case of risk adjust-
ment, they could lead to more accurate spending predictions. Over 50 million
people in the United States are currently enrolled in an insurance program
that uses risk adjustment—over three times the number in Medicare Advan-
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tage (Geruso and Layton 2015). The cost-saving implications of improved risk
adjustment formulas are immense.

The contributions of this paper include introducing cross-validation
(“hold-out” sampling), machine learning, and more parsimonious formulas
for plan payment risk adjustment. We illustrate the use of several machine
learning approaches for risk adjustment in the Truven MarketScan database
(Adamson, Chang, and Hansen 2008) and assess whether use of these proce-
dures improves risk adjustment with respect to cross-validated R2. The core
proposed framework is an ensembling machine learning technique that lever-
ages the use of cross-validation to take a weighted average of multiple algo-
rithms and form a single best predictor, as well as allowing for variable
selection procedures that produce a parsimonious formula with a reduced set
of variables. Our results demonstrated high accuracy for prediction using a
small set of variables, while protecting against overfitting.

METHODS

Data Source

We defined a population from the Truven MarketScan database with 2 years
of continuous coverage spanning 2011–2012, which yielded 10,976,994 peo-
ple. The Truven MarketScan database contains information on enrollment
and claims from private health plans and employers for between 17 and
51 million people each year, and it is one of the biggest databases of this type
(Adamson, Chang, and Hansen 2008). Variables available include enrollee
age, sex, region, insurance plan type, date and site of service, procedures,
expenditures, and inpatient diagnoses, as well as many others. We also created
Hierarchical Condition Category (HCC) variables using ICD-9-CM codes, as
these variables are the basis of the federal risk adjustment system (Kautter
et al. 2014). This database was the source of subjects for the current Market-
place risk-adjustment models devised by the federal government. For the pur-
poses of our work, we extracted a random sample of 250,000 people to
demonstrate the proposed risk adjustment procedures. The covariates we use
mimic those used in official risk-adjustment formulas, including age, sex, geo-
graphic area, five inpatient diagnosis categories, and 74 HCC variables, all
from 2011. The outcome is total annual expenditures in 2012. We refer to
other literature for further discussion of the database and variable construc-
tion, as well as additional approaches to sample construction (Layton, Ellis,
andMcGuire 2015; Rose et al. 2015).
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Statistical Analysis Procedure

The vector of covariatesW has length 86, and the spending outcomeY is con-
tinuous. Our goal is to develop the best predictor (i.e., the prediction function
with the optimal bias-variance tradeoff). We define this formally with a loss
function, which allows us to assess the performance of an estimator when
applied to data. We select a loss function based on the goal of our study, which
is to develop an estimator that is the best predictor of spending given a set of
covariates. This can be formalized by saying we want to estimate the condi-
tional distribution of the continuous outcomeYas a function of our covariates
W. This conditional distribution is the minimizer of the squared-error loss
function. Therefore, we use a squared-error loss function. As the conditional
distribution we seek to estimate minimizes this loss function, we want our
expected loss to be as small as possible to get an estimator that is close to this
conditional distribution. However, the framework we discuss is flexible and
can be adapted and extended for differing restrictions and loss functions to suit
newmetrics (Layton, Ellis, andMcGuire 2015).

The estimators we consider are any machines where we can plug in our
data (i.e.,W ) and obtain predicted values forY. This can range from a simple
local-averaging estimator to a parametric logistic regression to an advanced
decision-tree algorithm. Parametric regressions are the most commonly used
estimators in risk adjustment as they are easy to implement and interpret.
These models make very strong assumptions that are violated in practice. The
functional form of the data must be known; here that is the conditional distri-
bution of Y given W. For the purposes of risk adjustment, our background
knowledge does not support the assumptions required to a priori specify para-
metric regressions with confidence.

Penalized regression methods add a penalty term for the sake of reduc-
ing variance, although at a cost of added bias (Friedman, Hastie, and Tibshi-
rani 2010). A maximum-likelihood estimator for a parametric regression is
unbiased if correctly specified (which we do not expect to happen in practice),
but variability can be high with collinearity. Therefore, penalized regressions
offer an alternative bias-variance tradeoff. The lasso penalty, which stands for
least absolute shrinkage and selection operator, offers, as the name suggests,
simultaneous shrinkage of the coefficients toward zero as well as variable
selection. This is because the penalty shrinks many coefficients to zero, thus
eliminating those variables as contributing to the predicted values ofY. Penal-
ized regressions can be well suited to large datasets as they prevent the overfit-
ting that can occur due to collinear variables and high dimensionality.
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However, the lasso penalty will typically select a single variable from a set of
correlated variables, which may not be desirable (e.g., including only one of a
set of predictors that were dichotomized from a categorical variable). Addi-
tionally, when the number of predictors is small in relation to the number of
subjects, other penalties, namely the ridge penalty, will outperform the lasso
penalty when variables are highly correlated. The ridge penalty offers no vari-
able selection, as it shrinks the regression coefficients toward zero but they are
never exactly zero. Other penalties are available, and general elastic nets pro-
vide some balance between these two extremes by allowing a varying degree
of combined lasso and ridge penalties.

Decision tree-based methods are popular in many fields with high-
dimensional data, such as genomics, and they can be useful for reducing the
number of covariates and identifying more complex relationships between
variables. Decision trees are developed from a set of predictor variables, simi-
lar to standard regression methods. From these predictors, the algorithm cre-
ates rules to define splits in the tree, usually with a subset of the data. The goal
of the splits is to create divisions that have the most homogeneity in the out-
comeY. IfY is not sufficiently homogenous after a split, the node will be split
again based on another predictor variable. Otherwise, it will be defined as a
terminal node and assigned an outcome value. Different decision tree meth-
ods employ varying techniques to grow the tree, and common procedures
grow very large trees (i.e., many nodes) with a backwards deletion step used at
the end to discover the optimal tree size and remove terminal nodes (Breiman
et al. 1984). Overfitting is typically an issue with decision trees, especially
when the tree has a large number of terminal nodes. This overfitting can lead
to poor performance when the decision tree is applied to the full data or
another dataset from a similar population. Random forests is an ensembling
method that grows many trees in an effort to protect against outlier trees and
overfitting, although overfitting can still be an issue. The algorithm uses a sub-
set of the data to define the splits in the tree, but unlike in single decision trees,
random forests takes a bootstrap sample for each tree. The unselected obser-
vations are used to validate the procedure. Once a large number of trees have
been produced (often 500 or more), final rules are developed based on the
modal or average value across the trees.

Artificial neural networks, also referred to as neural nets and recently
rebranded as deep learning, are algorithms that attempt to explain an outcome
given a set of input variables by postulating a series of interconnected nodes
within multiple layers (i.e., the network). The relationships between the inter-
connected nodes are defined by weights, calculated with respect to one of a
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number of different rules. The algorithm starts with an initial guess for the
weights of the nodes, and then iterates, adjusting the weights given how well it
did in predicting the outcome. The algorithm was inspired by the complex
relationships of neurons within the brain. We guide the interested reader to
additional literature for further details of this complex technique (Venables
and Ripley 2002).

There are many other possible algorithm choices available (Friedman,
Hastie, and Tibshirani 2001; James et al. 2013), but even considering only
regression, lasso penalized regression, ridge penalized regression, a bal-
anced elastic net, a single tree, random forests, and a neural net, it is not
clear which procedure will yield the best performance. If we want to iden-
tify the single best algorithm from among these choices, we could employ
cross-validation. Cross-validation involves the use of rotating “hold-out”
samples from within our data to assess the performance of an algorithm. It
allows us to assign measures of performance to each algorithm that reflect
how the procedure would behave in practice. If the algorithm is only effec-
tive at producing accurate estimates in the data used to fit the algorithm, it
is not useful to employ in another setting with novel data, which is the goal
of most risk-adjustment problems.

The utility of cross-validation is easy to understand once the proce-
dure is illuminated. We discuss 10-fold cross-validation here, as it has many
desirable statistical properties and low computational burden compared to
other types of cross-validation (Dudoit and van der Laan 2005; van der
Laan, Polley, and Hubbard 2007). Our sample data are partitioned into 10
mutually exclusive blocks of equal size. In the first “fold,” we isolate the
first nine blocks to serve as the training set, so-called because we will fit
each of our five algorithms discussed above on this set of data, with the last
block serving as a validation set. After each of our algorithms is “trained”
using the data in the training set in fold 1, this fit is used to generate pre-
dicted values for the observations in the validation set. Thus, after fold 1 is
completed, we only have predicted values for 1/10th of the data for each
algorithm, but these values were generated on data not used to fit the algo-
rithm, thus protecting against overfitting. The validation set rotates such
that each block serves as the validation set once. See Figure 1. At the end
of the complete 10-fold cross-validation procedure, we have predicted val-
ues for each observation using the held-out validation sample from each
fold. A cross-validated mean squared error for each algorithm can then be
calculated using these predicted values:
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CV MSE ¼ 1=n
Xn

i¼1
ðYi � Ŷ iÞ2

where Ŷ represents the predicted probabilities for a particular algorithm and
n the sample size. The algorithm with the smallest cross-validated mean
squared error is the optimal choice given our loss function discussed earlier. A
cross-validated R2 can also be calculated:

CV R2 ¼ 1�
Xn

i¼1
ðYi � Ŷ iÞ2=

Xn

i¼1
ðYi � �Y iÞ2

� �

where �Y is the mean ofY. The optimal choice algorithm has been referred to
as the cross-validation selector or the discrete super learner (Dudoit and van
der Laan 2005; van der Laan, Polley, and Hubbard 2007).

One might query whether it is possible to improve on this method for
selecting the optimal algorithm. Recall that a single decision tree is often
improved by using the ensembling random forests procedure. It would be nat-
ural to then consider a general ensembling framework that allows us to aver-
age across many different types of algorithms. Thus, if multiple algorithms
capture important but unique components of the prediction function, our final
prediction function will incorporate all of them. This is exactly the method we
propose: an ensembler that takes a weighted average of multiple algorithms to
produce a single combined algorithm with optimal mean squared error. This
machine learning approach is called super learning, and it has been developed
and applied in the statistics literature (van der Laan, Polley, and Hubbard

Figure 1: Visualization of Ten-Fold Cross-Validation
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2007; van der Laan and Rose 2011). One can also conceptually view the
ensembling super learner as taking a weighted average of the predicted values
from each algorithm considered. The estimator requires only a few additional
steps beyond those described in the 10-fold cross-validation procedure.

Given that we have already performed 10-fold cross-validation and
obtained predicted values in the validation sets for each observation and algo-
rithm, we will now use these values to calculate the optimal weight coeffi-
cients. This takes the form of a regression ofYon these predicted values, with a
separate column of predicted values for each algorithm. The optimal weight
coefficients are the coefficients in front of each of these column variables in the
regression. One can show that these optimal weights minimize the cross-vali-
dated risk (van der Laan, Polley, and Hubbard 2007; van der Laan and Rose
2011). The penultimate step is to fit each algorithm with the full data and com-
bine these fits with the weights to generate the super learner prediction func-
tion. The super learner prediction function is thus now defined as a weighted
combination of algorithms. Some algorithms will typically receive a weight of
zero and are therefore ignored for the purposes of generating predicted values.
To produce final predicted values for the full data, one feeds the data through
the described super learner function. For example, if the lasso penalized
regression had a weight of 0.50 and the random forests algorithm also had a
weight of 0.50, with all other algorithms receiving a weight of zero, the super
learner predicted values would be a weighted combination of the lasso penal-
ized regression predicted values and the random forests predicted values.
Specifically, you would multiply the predicted values generated by the lasso
by 0.50 and add them to the predicted values generated by the random forests
procedure, also having been multiplied by 0.50, to produce your final pre-
dicted values. To apply the super learner function to a new dataset, one would
use the fixed fits of the lasso and random forests procedure established by the
original dataset, as well as the weights, running the new data through this func-
tion. Additional specifics regarding the mechanics of the super learner can be
found in other literature (van der Laan, Polley, and Hubbard 2007; van der
Laan and Rose 2011).

There is another key property of the super learning framework that
will be particularly important in the risk adjustment setting. With high-
dimensional data, it can be useful to reduce the number of variables con-
sidered for adjustment, thus simplifying the final formula. In super learn-
ing, a screening step can be included within the overall algorithm and its
cross-validation. We use a random forests screening step that takes the
top 10 variables with the highest variable importance measures. These
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variable importance measures are calculated by leaving each variable out
of the dataset and comparing the decision tree results to when it is
retained within the data. Alternative screening step methods include using
univariate regression to select the top 10 smallest p-values or using lasso
and keeping all variables with nonzero coefficients. Once the screening
step selects the reduced set of variables, only these variables are used
within the individual algorithms.

We consider the seven individual algorithms discussed in this sec-
tion, seven additional versions of them with the random forests screening
step (for a total of 14 individual algorithms), as well as the discrete super
learner and the super learner. See Table 1 for a summary of methods.
Analyses were performed in the R programming environment with pack-
ages glm, glmnet, rpart, randomForest, nnet, and SuperLearner (Liaw and
Wiener 2002; Venables and Ripley 2002; Friedman, Hastie, and Tibshi-
rani 2010; Polley and van der Laan 2013; R Core Team 2013; Therneau,
Atkinson, and Ripley 2013).

RESULTS

Truven MarketScan Database

The variables in our dataset are summarized in Table 2. The 10 variables
retained by the random forests screening step were age category 21–34 years,

Table 1: Several Machine LearningMethods for Risk Adjustment

Algorithm Description

Parametric
regression

Main terms parametric linear regression

Lasso Penalized regression; shrinks some covariate coefficients to zero,
eliminating their contributions to the predicted outcome

Ridge Penalized regression; shrinks some covariate coefficients toward zero,
but does not eliminate any covariates by shrinking to zero

Elastic net Penalized regression; allows various penalties combining ridge and lasso
penalties

Neural net Iterative weighted nodes in a network
Single tree Recursive partitioning and regression tree
Random forests Decision tree-basedmethod; uses bootstrapping to aggregate
Super learner Ensemblingmethod; takes a weighted average of included algorithms to

produce a single best prediction function
Discrete super
learner

Ensemblingmethod; selects the single algorithmwith the best performance
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all five inpatient diagnoses categories, and four HCC codes: metastatic cancer,
multiple sclerosis, end-stage renal disease, and stem cell transplant status/com-
plications. The super learner performed better than all the single algorithms
included in the analysis of the Truven MarketScan data. Efficiency losses for
the single algorithms compared to super learner, with respect to cross-vali-
dated R2, ranged from 4 to 92 percent. Neural net using the top 10 variables
from the random forests screening step was the worst performing algorithm,
with a relative efficiency of 8 percent. The neural net with all 86 variables also
performed poorly, with 15 percent relative efficiency compared to super lear-
ner. The parametric regression, lasso, elastic net, ridge, and random forests
with all variables performed equivalently, capturing 96 percent of the effi-
ciency of the super learner with cross-validated R2 values of 0.25. Any of these
five algorithms could be chosen as the discrete super learner in practice given
the minor absolute differences in performance, although the ridge regression
had the best performance. The top 10 versions of these algorithms had a drop
in relative efficiency compared to their respective full versions, with 88 percent

Table 2: Characteristics of TruvenMarketScan Sample (n = 250,000)

Variable

Total annual expenditures in second year, mean (SD) $5,476 ($17,736)
Male 119,736 48%
Age, years
20 < x ≤ 34 59,318 24%
34 < x ≤ 54 134,664 54%

Region
Northeast 48,483 19%
Midwest 71,126 28%
South 93,331 37%

Metropolitan statistical area 211,320 85%
Inpatient diagnoses
Heart disease 5,586 2%
Cancer 2,557 1%
Diabetes 2,819 1%
Mental health 5,395 2%
Other 22,108 9%

Hierarchical condition categories
Metastatic cancer 391 0.16%
Stem cell transplant/complication 31 0.01%
Multiple sclerosis 621 0.25%
End-stage renal disease 138 0.06%

Note. For brevity, we only summarize those hierarchical condition categories that rated as top 10
variables in our analysis.
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relative efficiency compared to the super learner and cross-validated R2 values
of 0.23. These five top 10 versions all had 92 percent relative efficiency com-
pared their full versions. Both versions of the single tree algorithm had relative
efficiencies of 73 percent compared to the super learner. See Table 3 for cross-
validated R2 and relative efficiency values. We present the top 10 parametric
linear regression formula coefficients and standard errors in Table 4, as it may
be of greatest interest to readers familiar with standard risk adjustment.

DISCUSSION

We introduced cross-validated machine learning methods for prediction in
risk adjustment in the Truven MarketScan database, generating new predic-
tion functions, including parsimonious versions of each method. Applying a
machine learning framework can be a useful tool for risk adjustment, and it
provides researchers with alternatives to large parametric regressions with
ever increasing numbers of covariates, which may not provide the flexibility
necessary in the age of “big data.” When additional novel estimators for pre-
diction are developed, they can easily be added to the ensembling framework
described here, as potential candidate learners. Ensembling can augment our
learning from data and provide statistical guarantees that we are leveraging
the information collected in the strongest possible way. Researchers need not

Table 3: Results Summary forMarketScan Risk Adjustment Algorithms

Algorithm CV R2 RE

Super learner 0.26 –
Parametric regression 0.25 0.96
Top 10 0.23 0.88

Lasso 0.25 0.96
Top 10 0.23 0.88

Elastic net 0.25 0.96
Top 10 0.23 0.88

Ridge 0.25 0.96
Top 10 0.23 0.88

Single tree 0.19 0.73
Top 10 0.19 0.73

Random forests 0.25 0.96
Top 10 0.23 0.88

Neural net 0.04 0.15
Top 10 0.02 0.08

RE = CV R2(algorithm)/CV R2(super learner).
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spend energy guessing which algorithm might perform the best or which vari-
ables should be included; they can now use super learning to run many at
once. The super learner here had the best overall performance. One should
note that algorithms that performed well here will not necessarily perform
well in other settings, as has been seen in other literature (van der Laan, Polley,
and Hubbard 2007; van der Laan and Rose 2011).

Our results also provide preliminary evidence that the use of a lesser
number of variables in risk adjustment could actually lead to better plan pay-
ment risk adjustment. Even examining only the two parametric linear regres-
sions considered within the super learner, the regression with 10 variables had
a cross-validated R2 of 0.23 versus 0.25 when compared to the regression with
all 86 covariates. While there is an efficiency loss with respect to cross-vali-
dated R2, it is relatively minor. It is possible that potential cost savings due to
the inability to game the risk adjustment system as aggressively as is possible
now with the current large number of diagnostic condition codes included in
risk adjustment formulas could leave this difference negligible. Thus, even if a
full super learner is not performed, a discrete super learner selecting among a
number of parametric linear regressions can lead to nontrivial improvements.
A discrete super learner could also be designed such that use of the full set of
risk adjustment variables would only be warranted if, say, there was a 20 per-
cent loss of efficiency when using the reduced set.

More broadly, deciding if a risk adjustment formula is better requires
more extensive empirical evaluation. As noted earlier, a statistical fit measure

Table 4: Coefficients and Standard Errors from Top Ten Linear Regression

Variable Coefficient (SE)

Intercept 3,982* (37)
Age, years
20 < x ≤ 34 �2,104* (73)

Inpatient diagnoses
Heart disease 16,453* (246)
Cancer 30,812* (333)
Diabetes 9,000* (320)
Mental health 7,044* (243)
Other 9,382* (138)

Hierarchical condition categories
Metastatic cancer 44,199* (806)
Stem cell transplant/complication 98,563* (2,801)
Multiple sclerosis 30,058* (623)
End-stage renal disease 129,822* (1,325)

*Significant p-values <.001.
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is the common starting point for evaluation, with a natural next step being sim-
ulation-based measures also applied in the literature. It is common, for exam-
ple, to construct predictive ratios, which compares the predicted payments
and costs for subgroups of the population who are regarded as being vulnera-
ble to underservice by plans (Kautter et al. 2014). Parsimony may come at a
cost in these terms—by employing a stripped-down empirical model, some
disease groups that merit higher payment in conventional risk adjustment
models may be underpaid with a simpler model. Any tradeoff here requires
empirical work in the context of a particular policy application. Simulation is
also needed to fully capture other plan payment features, such as consumer
premiums or reinsurance that also affect plan payments and plan incentives
(McGuire et al. 2014). Given the impressive fit of the parsimonious model
estimated here, consideration of its properties on additional policy-related cri-
teria is clearly merited.

One may notice that our top 10 parametric linear regression does not
contain sex. If there are specific variables that must be included for important
policy reasons, the super learner framework also allows the user to prespecify
these variables such that they are included in all algorithms regardless of their
results in any screening step. For that matter, different subsets of covariates
need not be selected in an automated fashion via a screening step. Policy mak-
ers, clinicians, and actuaries can work collaboratively to define subsets based
on various considerations (e.g., regulations, sensitivity to upcoding, clinical
pathways) and then compare the cross-validated results across these different
subsets. One may also be interested in performing cross-validation among dif-
ferent plans to better understand the generalizability of the risk-adjustment
formula, or considering plan type as a covariate in the prediction function
given the role contracts may play in utilization.

It is important to note that there is increased computing time and mem-
ory required in implementing ensemble super learning compared to standard
regression techniques. In our paper we also used a number of algorithms that
possibly could not be implemented in some settings given both time and com-
puting constraints. However, it may be feasible in those settings to compare a
minimal set of regressors, such as a parametric regression with the full set of
risk adjustment variables and one with 10 variables. The cross-validation of
the two algorithms would be performed, selecting the optimal regression
based on cross-validated MSE or R2 or other predefined rule balancing for-
mula complexity and performance, and then returning a final fixed regression
formula fit on the full data for use in new data. The key point being that our
study provides supporting evidence that using an exhaustive set of variables in
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a parametric linear regression for risk adjustment, as is standard practice, may
not be necessary compared to a simpler formula: a regression with just 10 vari-
ables.

While we focused here on the estimators and machine learning tech-
niques that can be employed in large claims databases and surveys, it is also
important to look toward the future. We are quickly heading toward a health
care structure where the amount of data outgrows the current capabilities of
our research systems, and as noted above, in some settings this is already the
case. We must consider how these new prediction methods can be integrated
practically into risk adjustment systems. Over time, this will include the devel-
opment of native big data systems that combine rigorous statistical methods,
the software to analyze the data, and databases that allow for rapid discovery.
While plan payment risk adjustment was introduced to combat the issue of
consumer selection into insurance plans, the implementation of cross-vali-
dated machine learning and more parsimonious formulas has yet to be incor-
porated, and it may provide improvements over current procedures.
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